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Quantum Gates and Hamilton Operators
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Quantum gates are described by unitary operators. We discuss the construction of
Hamilton operators from the unitary operators. Different techniques are applied.
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Quantum gates are described by unitary operators (Hardy and Steeb, 2001;
Nielsen and Chuang, 2000; Steeb and Hardy, 2004). Here, we consider a finite
dimensional Hilbert space and thus the unitary operators are described by n × n

unitary matrices. A unitary matrix U is defined by U ∗ = U−1. The eigenvalues
of U lie on the unit circle in the complex plane; that is they may be expressed
as exp(iφk), φk ∈ [0, 2π ) and k = 1, 2, . . ., n. Now any unitary matrix U can be
written as U = exp(iK), where K is a Hermitian matrix (K∗ = K). In this pa-
per, we describe several methods to construct the Hermitian matrix K from a
given unitary matrix U which represents a quantum gate. Then we will relate
the Hermitian matrix K to a Hamilton operator H given by U = exp(−iH t/h̄)
with H = h̄ωA, where A is a Hermitian matrix. Thus K = −Aωt and with
the frequency ω = 1/t we obtain K = −A. We consider 1-qubit and 2-qubit
gates.

The methods, we apply for the construction of the Hermitian matrix K are the
sine-cosine decomposition, the Schur decomposition (calculating the eigenvalues
and eigenvectors of U and then rotating the matrix into diagonal form), the Putzer
method and calculating the log of a square matrix.

The most common 1-qubit gates are the NOT-gate given by

UNOT =
(

0 1

1 0

)
, (1)
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the Hadamard gate given by

UH = 1√
2

(
1 1

1 −1

)
(2)

and the phase gate

UP =
(

1 0

0 eiφ

)
. (3)

Other gates could be the Pauli spin matrices σy, σz which are unitary and Hermitian.
The phase gate contains the σz-gate with φ = π .

A useful identity for our computation is that for any n × n matrix A we have

det exp(A) ≡ exp(tr A). (4)

Thus if A = iK and U = exp(iK) we obtain

det exp(iK) ≡ exp(itrK). (5)

or detU = exp(i tr K). Thus if det U = −1, we obtain trK = π . Another useful
identity is: Let A be an n × n matrix over C. Assume that A2 = cIn, where c ∈ R.
Then

exp(A) = In cosh(
√

c) + A√
c

sinh(
√

c). (6)

If we apply the result to the 2 × 2 matrix (z �= 0)

A =
(

0 z

−z 0

)

(i.e., A is skew-Hermitian A
T = −A) we obtain

eB = I2 cos(|z|) + A

|z| sin(|z|).

We first apply the cosine-sine decomposition. Any unitary 2n × 2n matrix U can
be decomposed as

U =
(

U1 0

0 U2

) (
C S

−S C

) (
U3 0

0 U4

)
(7)

where U1, U2, U3, U4 are 2n−1 × 2n−1 unitary matrices and C and S are the 2n−1 ×
2n−1 diagonal matrices

C = diag(cos α1, cos α2, . . . , cos α2n−1 ), S = diag(sin α1, sin α2, . . . , sin α2n−1 )
(8)
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where αxj ∈ R. Consider first the NOT-gate given by (1). We find a 2 × 2 Hermitian
matrix K such that UNOT = exp(iK). We have (α ∈ R.)(

0 1

1 0

)
=

(
u1 0

0 u2

)(
cos α sin α

− sin α cos α

)(
u3 0

0 u4

)

where u1, u2, u3, u4 ∈ C with |u1| = |u2| = |u3| = |u4| = 1. Matrix multiplica-
tion yields (

0 1

1 0

)
=

(
u1u3 cos α u1u4 sin α

−u2u3 sin α u2u4 cos α

)
.

Since u1, u2, u3, u4 �= 0 we obtain cos α = 0. We select the solution α = π/2.
Thus sin(π/2) = 1 and u1u4 = 1, −u1u3 = 1. We select the solution u1 = u4 = 1,
u2 = u3 = i. Thus we obtain the decomposition(

0 1

1 0

)
=

(
1 0

0 i

) (
0 1

−1 0

)(
i 0

0 1

)
= eiK.

We set V = diag(−i, 1). Consequently V is unitary. It follows that(
0 1

−1 0

)
= V ∗ei(K−πI2/2)V = eiV ∗(K−πI2/2)V .

For α = π/2 we obtain(
0 1

−1 0

)
=

(
cos(π/2) sin(π/2)

− sin(π/2) cos(π/2)

)
= exp

(
α

(
0 1

−1 0

)) ∣∣∣
α=π/2

.

Comparing the exponents yields(
0 π/2

−π/2 0

)
= iV ∗(K − πI2/2)V.

Since K is a Hermitian matrix we can write

K =
(

a b

b d

)
, a, d ∈ R.

Thus we obtain a = d = π/2, b = −π/2. Finally

K =
(

π/2 −π/2

−π/2 π/2

)
= π

2

(
1 −1

−1 1

)
.
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Next we consider the cosine-sine decomposition of the Hadamard gate given by
(2). We have (α ∈ R)

1√
2

(
1 1

1 −1

)
=

(
u1 0

0 u2

) (
cos α sin α

− sin α cos α

) (
u3 0

0 u4

)

where u1, u2, u3, u4 ∈ C with |u1| = |u2| = |u3| = |u4| = 1. Matrix multiplica-
tion yields

1√
2

(
1 1

1 −1

)
=

(
u1u3 cos α u1u4 sin α

−u2u3 sin α u2u4 cos α

)
.

Thus we obtain four equations with a solution α = π/4 and u1 = u3 = u4 =
1, u2 = −1. Therefore we have the decomposition

1√
2

(
1 1

1 −1

)
=

(
1 0

0 −1

) (
1/

√
2 1/

√
2

−1/
√

2 1/
√

2

) (
1 0

0 1

)

=
(

1 0

0 −1

)
exp

(
α

(
0 1

−1 0

)) ∣∣∣
α=π/4

.

Note that the two matrices on the right-hand side do not commute. Thus we have
a Hamilton operator for each unitary matrix. We can transform the NOT-gate to
the σz-gate using the Hadamard gate

UHUNOTU−1
H = σz.

In the Schur decomposition every n × n matrix A is similar to a matrix in upper
triangular form, and a unitary matrix may be chosen to produce the transformation.
If the matrix A is Hermitian then the matrix is in diagonal form after the unitary
transformation. Let K be the Hermitian matrix

K =
(

a b

b a

)
, a ∈ R, b ∈ C

with b �= 0. We calculate eiK using the normalized eigenvectors of K to construct
a unitary matrix V such that V ∗KV is a diagonal matrix. Then we specify a, b

such that we find the UNOT gate. The eigenvalues of K are given by (|b| =
√

bb̄)

λ1 = a + |b|, λ2 = a − |b|
with the corresponding normalized eigenvectors

x1 = 1√
2

(
1

|b|/b
)

, x2 = 1√
2

(
1

−|b|/b
)

.
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Thus the unitary matrices V, V ∗ which diagonalize K are

V = 1√
2

(
1 1

|b|/b −|b|/b

)
, V ∗ = 1√

2

(
1 b/|b|
1 −b/|b|

)

with

D := V ∗KV =
(

a + |b| 0

0 a − |b|

)
.

From U = eiK it follows that V ∗UV = V ∗eiKV = eiV ∗KV = eiD . Thus,

eiD =
(

ei(a+|b|) 0

0 ei(a−|b|)

)

and since V ∗ = V −1 the unitary matrix U is given by U = V eiDV ∗. We obtain

U = eia

(
cos(|b|) ib/|b| sin(|b|)

i|b|/b sin(|b|) cos(|b|)

)
.

If a = π/2 and b = −π/2 we find UNOT.
Calculating exp(A) we can also use the Cayley–Hamilton theorem, and the

Putzer method. We apply this method to find K for the Hadamard gate UH . Using
the Cayley-Hamilton theorem, we can write

f (A) = an−1A
n−1 + an−2A

n−2 + · · · + a2A
2 + a1A + a0In (9)

where the complex numbers a0, a1, . . . , an−1 are determined as follows: Let

r(λ) := an−1λ
n−1 + an−2λ

n−2 + · · · + a2λ
2 + a1λ + a0

which is the right-hand side of (9) with Aj replaced by λj (j = 0, 1, . . . , n − 1).
For each distinct eigenvalue λj of the matrix A, we consider the equation

f (λj ) = r(λj ). (10)

If λj is an eigenvalue of multiplicity k, for k > 1, then we consider also the
following equations

f ′(λ)|λ=λj
= r ′(λ)|λ=λj

, . . . , f (k−1)(λ)|λ=λj
= r (k−1)(λ)|λ=λj

.

We apply the method given above to calculate exp(iK), where the Hermitian 2 × 2
matrix K is given by

K =
(

a b

b c

)
, a, c ∈ R, b ∈ C.
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Then we find the condition on a, b and c such that eiK = UH . The eigenvalues of
iK are given by

λ1,2 = i(a + c)

2
± 1

2

√
2ac − a2 − c2 − 4bb̄.

We set in the following

� := λ1 − λ2 =
√

2ac − a2 − c2 − 4bb.

To apply the method given above we have

r(λ) = α1λ + α0 = f (λ) = eλ.

Thus we obtain the two equations

eλ1 = α1λ1 + α0, eλ2 = α1λ2 + α0.

It follows that

α1 = eλ1 − eλ2

λ1 − λ2
, α0 = eλ2λ1 − eλ1λ2

λ1 − λ2
.

Thus we have the condition

eiK = α1iK + α0I2 =
(

iα1a + α0 iα1b

iα1b̄ iα1c + α0

)
= 1√

2

(
1 1

1 −1

)
.

We obtain the four equations

iα1a + α0 = 1√
2
, iα1c + α0 = − 1√

2
, iα1b = 1√

2
, iα1b̄ = 1√

2
.

From the last two equations we find that b̄ = b, i.e., b is real. From the first two
equations we find α0 = −iα1(a + c)/2 and therefore, using the last two equations,
c = a − 2b. Thus(

iα1a + α0 iα1b

iα1b̄ iα1c + α0

)
=

(
iα1b iα1b

iα1b −iα1b

)
.

From the eigenvalues of eiK we find eλ1 − eλ2 = 2 and

� =
√

2ac − a2 − c2 − 4b2 = 2
√

2ib.

Furthermore,

λ1 = i(a − b) +
√

2ib, λ2 = i(a − b) −
√

2ib.

Thus, we arrive at the equation

ei(a−b)+√
2ib − ei(a−b)−√

2ib = 2.
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It follows that

iei(a−b) sin(
√

2b) = 1

and, therefore,

i cos(a − b) sin(
√

2b) − sin(a − b) sin(
√

2b) = 1

with a solution

b = π

2
√

2
, a = π

2

(
3 + 1√

2

)
, c = a − 2b = π

2

(
3 − 1√

2

)

Then the matrix K is given by

K = π

2

(
3 + 1/

√
2 1

√
2

1
√

2 3 − 1/
√

2

)
= 3π

2

(
1 0

0 1

)
+ π

2
· 1√

2

(
1 1

1 −1

)
.

We note that the second matrix on the right-hand side is the Hadamard gate again.
Another method to find the Hermitian matrix K is to consider the principal

logarithm (Steeb et al.. 2005) of a matrix A ∈ Cn×n with no eigenvalues on R−

(the closed negative real axis). This logarithm is denoted by log A and is the
unique matrix B such that exp(B) = A and the eigenvalues of B have imaginary
parts lying strictly between −π and π . For A ∈ Cn×n with no eigenvalues on R−

we have the following integral representation

log(s(A − In) + In) =
∫ s

0
(A − In)(t(A − In) + In)−1dt. (11)

Thus with s = 1, we obtain

log A =
∫ 1

0
(A − In)(t(A − In) + In)−1dt (12)

where In is the n × n identity matrix. Note that, this method cannot be applied to
UNOT and UH since they admit the eigenvalue −1. As an example, consider the
unitary operator

U = 1√
2

(
1 −1

1 1

)
.

We calculate log U to find iK given by U = exp(iK ). We set B = iK in the
following. The eigenvalues of U are given by

λ1 = 1√
2

(1 + i), λ2 = 1√
2

(1 − i).

Thus the condition to apply the Eq. (12) is satisfied. We consider first the general
case U = (ujk) and then simplify to u11 = u22 = 1/

√
2 and u21 = −u12 = 1/

√
2.
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We obtain

t(U − I2) + I2 =
(

1 + t(u11 − 1) tu12

tu21 1 + t(u22 − 1)

)

and

d(t) := det(t(U − I2) + I2) = 1 + t(−2 + trU ) + t2(1 − trU + det U ).

Let X ≡ det U − trU + 1. Then

(U − I2)(t(U − I2) + I2)−1 = 1

d(t)

(
tX + u11 − 1 u12

u21 tX + u22 − 1

)
.

With u11 = u22 = 1/
√

2, u21 = −u12 = 1/
√

2 we obtain

d(t) = 1 + t(−2 +
√

2) + t2(2 −
√

2)

and X = 2 − √
2. Thus the matrix takes the form

1

d(t)

(
t(2 − √

2) + 1/
√

2 − 1 −1
√

2

1
√

2 t(2 − √
2) + 1/

√
2 − 1

)
.

Since ∫ 1

0

1

d(t)
dt = 2√

2

∣∣∣∣∣arctan

(
2(2 − √

2)t + √
2 − 2√

2

)∣∣∣∣∣
1

0

=
√

2
π

4

and ∫ 1

0

t

d(t)
dt = 1√

2

π

4

we obtain

K =
(

0 iπ/4

−π/4 0

)
.

The unitary matrices are elements of the Lie group U (n). The corresponding Lie
algebra are the matrices with the condition X∗ = −X. An important subgroup
of U (n) is the Lie group SU (n) with the condition that det U = 1. Note that the
Hadamard gate and the NOT-gate are not elements of the Lie algebra SU (2) since
the determinants of these unitary matrices are −1. The corresponding Lie algebra
SU (n) of the Lie group SU (n) are the n × n matrices given by X∗ = −X and
trX = 0.
Let σ1, σ2, σ3 be the Pauli spin matrices. Then any unitary matrix in U (2) can be
represented by

U (α, β, γ, δ) = eiαI2e−iβσ3/2e−iγ σ2/2e−iδσ3/2
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where 0 ≤ α < 2π, 0 ≤ β < 2π, 0 ≤ γ ≤ π and 0 ≤ δ < 2π . Then

U (α, β, γ, δ)

=
(

eiα 0

0 eiα

) (
e−iβ/2 0

0 eiβ/2

)(
cos(γ /2) − sin(γ /2)

sin(γ /2) cos(γ /2)

)(
e−iδ/2 0

0 eiδ/2

)
.

Obviously this is the sine-cosine decomposition described above. Each of the four
matrices on the right-hand side are unitary and eiα is unitary. Thus U is unitary
and det(U ) = e2iα . We obtain the special case of the Lie group SU (2) if α = 0.
The most important two-qubit gates are the controlled-NOT-gate

UCNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




and the swap-gate

USWAP =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 .

Both gates can be written as direct sums, i.e.

UCNOT = I2 ⊕ UNOT, USWAP = ⊕ UNOT ⊕ 1.

Thus, we can apply the result given above for the construction of the Hermitian
matrix K. The same applies for the Fredkin gate and the Toffoli gate which are
three qubit gates.
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