International Journal of Theoretical Physics, Vol. 45, No. 5, May 2006 (© 2006)
DOI: 10.1007/s10773-006-9084-5

Quantum Gates and Hamilton Operators
Willi-Hans Steeb'-? and Yorick Hardy'

Received September 12, 2005, accepted January 26, 2006
Published Online: April 12, 2006

Quantum gates are described by unitary operators. We discuss the construction of
Hamilton operators from the unitary operators. Different techniques are applied.
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Quantum gates are described by unitary operators (Hardy and Steeb, 2001;
Nielsen and Chuang, 2000; Steeb and Hardy, 2004). Here, we consider a finite
dimensional Hilbert space and thus the unitary operators are described by n x n
unitary matrices. A unitary matrix U is defined by U* = U~!. The eigenvalues
of U lie on the unit circle in the complex plane; that is they may be expressed
as exp(i¢y), ¢r € [0,2mr) and k = 1, 2, ..., n. Now any unitary matrix U can be
written as U = exp(i K), where K is a Hermitian matrix (K* = K). In this pa-
per, we describe several methods to construct the Hermitian matrix K from a
given unitary matrix U which represents a quantum gate. Then we will relate
the Hermitian matrix K to a Hamilton operator H given by U = exp(—i Ht /h)
with H =hwA, where A is a Hermitian matrix. Thus K = —Awt and with
the frequency w = 1/t we obtain K = —A. We consider 1-qubit and 2-qubit
gates.

The methods, we apply for the construction of the Hermitian matrix K are the
sine-cosine decomposition, the Schur decomposition (calculating the eigenvalues
and eigenvectors of U and then rotating the matrix into diagonal form), the Putzer
method and calculating the log of a square matrix.

The most common 1-qubit gates are the NOT-gate given by
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the Hadamard gate given by

U—l 1 1 5
=2 @

U—10 3
r={y o) 3

Other gates could be the Pauli spin matrices oy, o, which are unitary and Hermitian.
The phase gate contains the o, -gate with ¢ = 7.
A useful identity for our computation is that for any n x n matrix A we have

and the phase gate

det exp(A) = exp(tr A). @
Thus if A =iK and U = exp(i K) we obtain
detexp(iK) = exp(itrK). (&)

or detU = exp(i tr K). Thus if detU = —1, we obtain trK = 7. Another useful
identity is: Let A be an n x n matrix over C. Assume that A% = cI,, where c € R.
Then

exp(A) = I, cosh(+/c) + i sinh(1/). (6)
Nz

If we apply the result to the 2 x 2 matrix (z # 0)

(%)

. . ... —T .
(i.e., A is skew-Hermitian A° = —A) we obtain

B A .
e” = I, cos(|z|) + m sin(|z]).

We first apply the cosine-sine decomposition. Any unitary 2" x 2" matrix U can

be decomposed as
u, 0 c S Us 0
U= @)
0 U, -S C 0 U

where Uy, U,, Us, Uy are 2"~ x 2"~ ! unitary matrices and C and S are the 2"~ x
2"~ diagonal matrices

C = diag(cosay, cosay, ..., cosam-1), S = diag(sinoy, sinay, ..., Sinomp-1)

®)
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where a,; € R. Consider first the NOT-gate given by (1). We finda2 x 2 Hermitian
matrix K such that Unor = exp(i K). We have (¢ € R.)

0 1 u; O cosa  sina us 0
1 o) \o U —sina  cos« 0 uy
where uy, uy, usz, ug € C with |u;| = |uy| = |us| = |ug| = 1. Matrix multiplica-
tion yields
0 1 UIU3COSC  UU4SINQ
1 0] \ —wussine wsuscosa |’
Since uy, us, us, ugy # 0 we obtain cosa = 0. We select the solution o = /2.

Thus sin(r/2) = land uuq = 1, —uju3 = 1. We select the solutionu; = uq = 1,
uy = u3z = i. Thus we obtain the decomposition

(£ )

We set V = diag(—i, 1). Consequently V is unitary. It follows that

( 0 1) — V*ei(l(—nlz/2)v — eiV*(K—nlz/Z)V
-1 0 '

For o = /2 we obtain
0 1 cos(wr/2)  sin(w/2) 0 1
= . =exp|o
-1 0 —sin(mw/2) cos(r/2) -1 0
Comparing the exponents yields

(0 71/2) ,
=iV*K —L/2)V.

a=n/2

—n/2 0

Since K is a Hermitian matrix we can write

a b
K=1_ , a,deR.
b d

Thus we obtaina = d = n /2, b = —mn /2. Finally

K — /2 —m/2 L R T
“\=r2 w2 ) 2\t 1)
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Next we consider the cosine-sine decomposition of the Hadamard gate given by
(2). We have (¢ € R)

1 1 1 u; O cosa  sina us 0
V2\1 1) N0 uw —sina  coso 0 uy
where uy, uy, uz, ug € C with |u;| = |uy| = |us| = |ug| = 1. Matrix multiplica-
tion yields
1 1 1 U U3 COSC  UjlgSINQ
2\ =1\ —uuzsine wusugcos a |

Thus we obtain four equations with a solution ¢ = /4 and u| = u3 = ug =
1, uy = —1. Therefore we have the decomposition

1 (1 1\ (1 0\[1/N2 1V2\(1 0
L2\t o—1) 7 \o 1)\ —iv2 1v2) \o o

(o )= 0)

Note that the two matrices on the right-hand side do not commute. Thus we have
a Hamilton operator for each unitary matrix. We can transform the NOT-gate to
the o,-gate using the Hadamard gate

Ot::'[/4.

UHUNQTUI;l = 0;.

In the Schur decomposition every n x n matrix A is similar to a matrix in upper
triangular form, and a unitary matrix may be chosen to produce the transformation.
If the matrix A is Hermitian then the matrix is in diagonal form after the unitary
transformation. Let K be the Hermitian matrix

a b
K=<_ ) aceR, beC
b a

with b # 0. We calculate ¢’X using the normalized eigenvectors of K to construct
a unitary matrix V such that V*KV is a diagonal matrix. Then we specify a, b
such that we find the Uyor gate. The eigenvalues of K are given by (|b| = ~v/bb)

AL =a+|b|, Ay =a — |b|

with the corresponding normalized eigenvectors

ne %(wbb)’ = %(—wlvb)'
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Thus the unitary matrices V, V* which diagonalize K are

1 1 pe_ L (1 b/
~ V2 \Ibl/b —ipl/b ) ~ V2 \ 1 —b/Ib]

a+bl 0
D:= V'KV = .
0 a-—|b|

From U = ¢'X it follows that V*UV = V*e! KV = ¢!V"KV = ¢iD Thus,

eiD B ei(a+|b\) 0
=\ o an

and since V* = V! the unitary matrix U is given by U = Ve'P?V*. We obtain

o cosUbl ib/IbIsingibl)
= \ipypsingeh  cos(p) )

with

Ifa=m/2and b = —n/2 we find Unor.

Calculating exp(A) we can also use the Cayley—Hamilton theorem, and the
Putzer method. We apply this method to find K for the Hadamard gate Uy . Using
the Cayley-Hamilton theorem, we can write

FA) =a, A" 4 a, 2 A 4+ AR+ a A+ agl, )
where the complex numbers ag, a1, . . ., a,—1 are determined as follows: Let
FA) = ap N ay A" ad® 4 agh + ag

which is the right-hand side of (9) with A/ replaced by A/(j =0, 1,...,n — 1).
For each distinct eigenvalue A ; of the matrix A, we consider the equation

Jj) =r)). (10)

If A; is an eigenvalue of multiplicity k, for k > 1, then we consider also the
following equations

Wz, = Mhzys oo Pz, = r* P W)as, -

We apply the method given above to calculate exp(i K ), where the Hermitian 2 x 2
matrix K is given by

a b
K:(- ), a,ceR, beC.
b c
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Then we find the condition on a, b and c¢ such that ¢!X = Uy. The eigenvalues of
iK are given by

ila+c)
Al =

1 =
+ 5\/2616‘ —a? —c? —4bb.

We set in the following

A:i=x — A = V2ac — a® — ¢ — 4bb.
To apply the method given above we have
r) =ah+og = f(1) = e

Thus we obtain the two equations

oM = oA + ap, e = aii + ap.
It follows that
et — e 20 — ety
o = —)» a(] - .
Al — A2 Al — A2

Thus we have the condition

K ) ioga + o iogb 1 1 1
et =aiK + o, = - ) = — .
io b ioic+ ag 2\ -1

We obtain the four equations

1 _
ivja+oy=—, iaic+oay=——, Iioth=—, iab=—.
1 NG 1 NG 1 NG 1 NG
From the last two equations we find that b = b, i.e., b is real. From the first two
equations we find ¢y = —i«j(a + ¢)/2 and therefore, using the last two equations,
¢ =a — 2b. Thus

ioja + o i b ioenh  iogh
ioyb iojc+ o B i —ioyb |’

From the eigenvalues of ¢/X we find e*' — ¢** = 2 and

A= \/Zac —a? — 2 — 4b2 = 2/2ib.
Furthermore,
A =ila—b)+2ib,  k=ila—b)—2ib.
Thus, we arrive at the equation

ei(a—b)+ﬁih _ ei(a—h)—ﬁib -2
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It follows that
i@ gin(v/2b) = 1
and, therefore,
icos(a — b) sin(«/zb) — sin(a — b) sin(\/ib) =1

with a solution

T T 1 T 1
b=—, a=—|3+—), ¢c=a-2b=—|3—-— —
232 2( ﬁ) 2< ﬁ)

Then the matrix K is given by

T (3FUVZ W2\ B 10\ a1 (1]
"2\ w2 3-1v2) 2 \o 1 +5’E 1 1)

‘We note that the second matrix on the right-hand side is the Hadamard gate again.

Another method to find the Hermitian matrix K is to consider the principal
logarithm (Steeb et al.. 2005) of a matrix A € C**" with no eigenvalues on R™
(the closed negative real axis). This logarithm is denoted by log A and is the
unique matrix B such that exp(B) = A and the eigenvalues of B have imaginary
parts lying strictly between —m and 7. For A € C"*" with no eigenvalues on R™
we have the following integral representation

log(s(A — 1) + I,) = /.S(A — L)(t(A = L)+ I,)"dr. (1)
0

Thus with s = 1, we obtain

1
logA = / (A—L)t(A—1,)+ 1,) 'dt (12)
0

where I, is the n x n identity matrix. Note that, this method cannot be applied to
Unor and Uy since they admit the eigenvalue —1. As an example, consider the

unitary operator
U 1 1 -1
T2\ 1)

We calculate log U to find ig given by U = exp(igx). We set B = ix in the
following. The eigenvalues of U are given by

1 1
A= E(l +i), l= E(l —1).

Thus the condition to apply the Eq. (12) is satisfied. We consider first the general
case U = (u ji) and then simplify touy; = up = 1/\/5 and ur; = —upp = l/ﬁ.
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We obtain

1+t —1) tu
tU - L)+ I = ! 2
tuy 1+tun—1)

and
d(t) :=dett(U — L)+ L) =1 + t(=2 4+ trtU) + t*(1 — trU + det U).
Let X =detU — trU + 1. Then

1

U-L)tU-hL)+hL) "= (

tX +up—1 Ui
~d() '

Usy tX +u»y—1
Withuy; = uypy = 1/\/5, Uyl = —Upp = 1/\/5 we obtain

dt) = 1 +1(=2+2) + 122 - V2)
and X = 2 — +/2. Thus the matrix takes the form

1 (1Q=VD)+1/vV2-1 —-1v2
%< V2 z<2—ﬁ)+1/ﬁ—1>'
Since
I 2 22— V2t + 2 -2 l n
/0 %dtzﬁ arctan( NG )Ozﬁz
and
/l;d,_Lz
o d@) V24
we obtain

( 0 in/4>
K= .
—m/4 0

The unitary matrices are elements of the Lie group U(n). The corresponding Lie
algebra are the matrices with the condition X* = —X. An important subgroup
of U(n) is the Lie group SU (n) with the condition that det U = 1. Note that the
Hadamard gate and the NOT-gate are not elements of the Lie algebra SU (2) since
the determinants of these unitary matrices are —1. The corresponding Lie algebra
SU(n) of the Lie group SU(n) are the n x n matrices given by X* = —X and
trX = 0.

Let 01, 02, 03 be the Pauli spin matrices. Then any unitary matrix in U(2) can be
represented by

U(Ol, ﬁ’ Y, 8) — eiat]ze—iﬂd}/ze—iyaz/ze—i503/2
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where 0 <a <27,0<B8 <27,0<y <mand0 <§ < 2x. Then

U, By, 9)
er 0 e 20 cos(y/2) —sin(y/2)\ [e* 0
SN0 e 0 P2 ) \sin(y/2) cos(y/2) 0 P2

Obviously this is the sine-cosine decomposition described above. Each of the four
matrices on the right-hand side are unitary and e/® is unitary. Thus U is unitary
and det(U) = ¢%®. We obtain the special case of the Lie group SU(2) if « = 0.
The most important two-qubit gates are the controlled-NOT-gate

1 0 0O
01 00
Unor=14 0 0 1
0 010
and the swap-gate
1 0 00O
0010
Uwar =14 1 o o
0 0 0 1

Both gates can be written as direct sums, i.e.

Ucnor = L @ Unor,  Uswap = ® Unor @ 1.

Thus, we can apply the result given above for the construction of the Hermitian
matrix K. The same applies for the Fredkin gate and the Toffoli gate which are
three qubit gates.
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